35,397 research outputs found

    Composite fields, generalized hypergeometric functions and the U(1)YU(1)_Y symmetry in the AdS/CFT correspondence

    Get PDF
    We discuss the concept of composite fields in flat CFT as well as in the context of AdS/CFT. Furthermore we show how to represent Green functions using generalized hypergeometric functions and apply these techniques to four-point functions. Finally we prove an identity of U(1)YU(1)_Y symmetry for four-point functions.Comment: 12 pages, 2 figure

    Ordered Landmarks in Planning

    Full text link
    Many known planning tasks have inherent constraints concerning the best order in which to achieve the goals. A number of research efforts have been made to detect such constraints and to use them for guiding search, in the hope of speeding up the planning process. We go beyond the previous approaches by considering ordering constraints not only over the (top-level) goals, but also over the sub-goals that will necessarily arise during planning. Landmarks are facts that must be true at some point in every valid solution plan. We extend Koehler and Hoffmann's definition of reasonable orders between top level goals to the more general case of landmarks. We show how landmarks can be found, how their reasonable orders can be approximated, and how this information can be used to decompose a given planning task into several smaller sub-tasks. Our methodology is completely domain- and planner-independent. The implementation demonstrates that the approach can yield significant runtime performance improvements when used as a control loop around state-of-the-art sub-optimal planning systems, as exemplified by FF and LPG

    Cepheid Variables in the Maser-Host Galaxy NGC 4258

    Get PDF
    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via VLBI observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and GMOS, obtaining 16 epochs of data in the SDSS gri bands over 4 years. We carried out PSF photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope (LSST) should enable Cepheid searches out to at least 10 Mpc.Comment: Accepted for publication in the Astronomical Journa

    Aspects of the conformal operator product expansion in AdS/CFT correspondence

    Get PDF
    We present a detailed analysis of a scalar conformal four-point function obtained from AdS/CFT correspondence. We study the scalar exchange graphs in AdS and discuss their analytic properties. Using methods of conformal partial wave analysis, we present a general procedure to study conformal four-point functions in terms of exchanges of scalar and tensor fields. The logarithmic terms in the four-point functions are connected to the anomalous dimensions of the exchanged fields. Comparison of the results from AdS graphs with the conformal partial wave analysis, suggests a possible general form for the operator product expansion of scalar fields in the boundary CFT.Comment: 31 pages, LaTeX, accepted for publication in ATM

    Effect of many modes on self-polarization and photochemical suppression in cavities

    No full text
    The standard description of cavity-modified molecular reactions typically involves a single (resonant) mode, while in reality, the quantum cavity supports a range of photon modes. Here, we demonstrate that as more photon modes are accounted for, physicochemical phenomena can dramatically change, as illustrated by the cavity-induced suppression of the important and ubiquitous process of proton-coupled electron-transfer. Using a multi-trajectory Ehrenfest treatment for the photon-modes, we find that self-polarization effects become essential, and we introduce the concept of self-polarization-modified Born–Oppenheimer surfaces as a new construct to analyze dynamics. As the number of cavity photon modes increases, the increasing deviation of these surfaces from the cavity-free Born–Oppenheimer surfaces, together with the interplay between photon emission and absorption inside the widening bands of these surfaces, leads to enhanced suppression. The present findings are general and will have implications for the description and control of cavity-driven physical processes of molecules, nanostructures, and solids embedded in cavities

    Carbon line formation and spectroscopy in O-type stars

    Full text link
    The determination of chemical abundances constitutes a fundamental requirement for obtaining a complete picture of a star. Particularly in massive stars, CNO abundances are of prime interest, due to the nuclear CNO-cycle and various mixing processes which bring these elements to the surface. We aim at enabling a reliable carbon spectroscopy for our unified NLTE atmosphere code FASTWIND. We develop a new carbon model atom including CII/III/IV/V, and discuss problems related to carbon spectroscopy in O-type stars. We describe different tests to examine the reliability of our implementation, and investigate which mechanisms influence the carbon ionization balance. By comparing with high-resolution spectra from six O-type stars, we check in how far observational constraints can be reproduced by our new carbon line synthesis. Carbon lines are even more sensitive to a variation of temperature, gravity, and mass-loss rate, than hydrogen/helium lines. We are able to reproduce most of the observed lines from our stellar sample, and to estimate those specific carbon abundances which bring the lines from different ions into agreement. For hot dwarfs and supergiants earlier than O7, X-rays from wind-embedded shocks can impact the synthesized line strengths, particularly for CIV, potentially affecting the abundance determination. We have demonstrated our capability to derive realistic carbon abundances by means of FASTWIND, using our recently developed model atom. We found that complex effects can have a strong influence on the carbon ionization balance in hot stars. For a further understanding, the UV range needs to be explored as well. By means of detailed nitrogen and oxygen model atoms available to use, we will be able to perform a complete CNO abundance analysis for larger samples of massive stars, and to provide constraints on corresponding evolutionary models and aspects.Comment: 22 pages, 16 figures, 6 table

    Radiation-driven winds of hot luminous stars. XVI. Expanding atmospheres of massive and very massive stars and the evolution of dense stellar clusters

    Full text link
    Context: Starbursts, and particularly their high-mass stars, play an essential role in the evolution of galaxies. The winds of massive stars not only significantly influence their surroundings, but the mass loss also profoundly affects the evolution of the stars themselves. In addition to the evolution of each star, the evolution of the dense cores of massive starburst clusters is affected by N-body interactions, and the formation of very massive stars via mergers may be decisive for the evolution of the cluster. Aims: To introduce an advanced diagnostic method of O-type stellar atmospheres with winds, including an assessment of the accuracy of the determinations of abundances, stellar and wind parameters. Methods: We combine consistent models of expanding atmospheres with detailed stellar evolutionary calculations of massive and very massive single stars with regard to the evolution of dense stellar clusters. Accurate predictions of the mass loss rates of very massive stars requires a highly consistent treatment of the statistical equilibrium and the hydrodynamic and radiative processes in the expanding atmospheres. Results: We present computed mass loss rates, terminal wind velocities, and spectral energy distributions of massive and very massive stars of different metallicities, calculated from atmospheric models with an improved level of consistency. Conclusions: Stellar evolutionary calculations using our computed mass loss rates show that low-metallicity very massive stars lose only a very small amount of their mass, making it unlikely that very massive population III stars cause a significant helium enrichment of the interstellar medium. Solar-metallicity stars have higher mass-loss rates, but these are not so high to exclude very massive stars formed by mergers in dense clusters from ending their life massive enough to form intermediate-mass black holes.Comment: Accepted by A&

    Stochasticity & Predictability in Terrestrial Planet Formation

    Get PDF
    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6\nu_6 resonance and we find that the mass distribution peaks at the ν5\nu_5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003, and HD 20781 may host undetected giant planets.Comment: replaced to match published version, 20 pages, 11 figures, published in MNRAS, simulation outputs available at https://cheleb.net/astro/sp15
    • …
    corecore